TWP-ICE - Summary and model study implications

Christian Jakob (BMRC) with Peter May (BMRC) and Jim Mather (PNNL)

TWP-ICE setup

- Extensive ground-based network
 - >1000 three-hourly radiosondes at 5 sites
 - Ship
 - radars, lidars, radiometers, ...
- 5 research aircraft
- 150 participants

Ground based observations:

3D cloud structure from Polarimetric and Doppler radar Profiles of clouds at 4 sites (ARM, Profiler, C-Pol and Ship) Radiative flux measurements at multiple sites Surface fluxes at 4 land sites and ship 3 hrly soundings from circle of 5 sites and 6hrly at Darwin Wind profilers at 2 sites Temp/humidity profilers at ARM site

~ 1050 sondes 2 by 3500 radar volumes 5-10 sec cloud profiles at 3 sites 1 min sampling of w at 2 sites +satellite and NWP

Cape Don

Pirlangimpi

Mt Bundy

Fogg dam

RFC

CDU briefing

RV Southern Surveyor

24 day cruise as floating ARM site

Radiosondes every 3 hours
Surface sensible, latent heat fluxes
Radiative fluxes
95 GHz cloud radar (6 sec res)
Lidar

Buoys Sea-soar CDT

Aircraft strategies

Twin Otter flying below high altitude aircraft
High altitude aircraft stacked, cross-sections and spirals thru' clouds

Dornier sampling BL environment and inflow

Dimona measuring surface fluxes and BL structure

Coordinated from "control centre" at RFC

More than 20 missions

4 flux over ship, 5 over land, 1 survey

Several BL structure missions including recovery after convection

3 monsoon and 3 break thick anvil

4 cirrus missions

3 satellite validation missions

Spirals over ground sites for validation of ground remote sensor retrievals

Several surveys

Height (km)

What we had

What we had

Spatial distribution (just adding up cappis) Z=305 R1.36

3 hourly soundings from Point Stuart
Warming (low)/ cooling (mid) and dryings through middle period
BL diurnal cycle of temperature increasing in magnitude
Stratospheric waves

Monsoon

22 January - 12 UTC

24 January - 8 UTC

Dry Monsoon

Shallow case - 30 Jan 2006

z = 2.5 km Z > 40dBz common

z = 6 km

dBZ

Diurnal record of number of cells with Z > 35 dBz at given height

Models tend to have a hard time with this type of convection!

"Shallow" case - 31 January

Break conditions

10 February - 8 UTC

Model implications

- 4 distinct phases
 - Monsoon
 - Dry monsoon (shallow clouds, heavy rain)
 - Suppressed
 - Break Conditions

Model implications

- SCM and CRM
 - concentrate on 1) Dry monsoon, 2)
 Monsoon, 3) Suppressed (shallow Cu from ship data?)
 - isolated topographically driven convection will be hard to capture
- High-resolution "NWP" models
 - could do break convection as priority

Forcing data

- Outcome of discussion with Steve
- Ensemble Forcing data set based on variational analysis is being developed at BMRC (Tim Hume) as part of ARM grant (2year time scale)